Computing Flows Around Microorganisms: Slender-Body Theory and Beyond
نویسندگان
چکیده
We present the mathematical framework that governs the interaction of a forcegenerating microorganism with a surrounding viscous fluid. We review slender-body theories that have been used to study flagellar motility, along with the method of regularized Stokeslets. We investigate the role of a dinoflagellate transverse flagellum as well as the flow structures near a choanoflagellate.
منابع مشابه
Investigation of vortex-induced vibration phenomenon in verticallong circular slender structure with non-uniform flows
Analyzing the vortex-induced vibration of a slender marine structure withlength to diameter ratio up to 200 is the objective of this study. This slender is free to move in both in-line and cross flow directions and immersed completely in water. Three different types of shear currents pass on it and cause to vibrate slender in different forms. Nowadays, these vibrations are very important for de...
متن کاملPropulsion of microorganisms by a helical flagellum.
The swimming of a bacterium or a biomimetic nanobot driven by a rotating helical flagellum is often interpreted using the resistive force theory developed by Gray and Hancock and by Lighthill, but this theory has not been tested for a range of physically relevant parameters. We test resistive force theory in experiments on macroscopic swimmers in a fluid that is highly viscous so the Reynolds n...
متن کاملImplementation of D3Q19 Lattice Boltzmann Method with a Curved Wall Boundary Condition for Simulation of Practical Flow Problems
In this paper, implementation of an extended form of a no-slip wall boundary condition is presented for the three-dimensional (3-D) lattice Boltzmann method (LBM) for solving the incompressible fluid flows with complex geometries. The boundary condition is based on the off-lattice scheme with a polynomial interpolation which is used to reconstruct the curved or irregular wall boundary on the ne...
متن کاملGlobal Artificial Boundary Conditions for Computation of External Flow Problems with Propulsive Jets
We propose new global artificial boundary conditions (ABC’s) for computation of flows with propulsive jets. The algorithm is based on application of the difference potentials method (DPM). Previously, similar boundary conditions have been implemented for calculation of external compressible viscous flows around finite bodies. The proposed modification substantially extends the applicability ran...
متن کاملMultigroup Models of the Convective Epoch in Core Collapse Supernovae
Understanding the explosion mechanism of core collapse supernovae is a problem that has plagued nuclear astrophysicists since the first computational models of this phenomenon were carried out in the 1960s. Our current theories of this violent phenomenon center around multidimensional effects involving radiation-hydrodynamic flows of hot, dense matter and neutrinos. Modeling these multi-dimensi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American Mathematical Monthly
دوره 121 شماره
صفحات -
تاریخ انتشار 2014